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Complete variationally correct calculations have been performed for model two-electron
diatomic “molecules’ using the Cottrell and Sutton Hamiltonian and Weinbaum, Wang and
MO wave functions. Both homonuclear and heteronuclear systems have been studied. In
homonuclear bonds between high Z atoms the MO function gives lower energies than the
Wang function. The presence of ionic terms in the wave function is not necessary to show
Pauling-type “ionic resonance energy stabilization’ of heteronuclear molecules. The presence
of ionic terms is important, however, to get the best energies, and is essential to achieve even
approximately correct values of the dipole moments. The model systems predict that Pauling’s
correlation of dipole moments and electronegativity differences should show a dependence on
%4 + xz. This appears to be indicated by the experimental data.

Variationsrechnungen an zweiatomigen Zweielektronen-Modellmolekiilen werden unter Ver-
wendung des Hamilton-Operators von CoTTRELL und SurTon und einer MO-Funktion bwz.
der Funktionen von Wang sowie WEINBAUM durchgefiihrt. In homonuklearen Molekiilen mit
hoher Kernladungszahl gibt eine MO-Funktion eine tiefere Energie als die von Wawga. Toni-
sche Terme in der Wellenfunktion sind nicht nétig, um zu zeigen, daB eine Bindung in heteropo-
laren Molekiilen gegeniiber einer hom&opolaren Bindung stabilisiert ist, wohl aber, um einen
guten Wert fiir Energie und Dipolmoment zu erhalten. Die Paulingsche Korrelation von
Dipolmoment und Elektronegativitéitsdifferenz ist von der Summe der Elektronegativitdten
abhingig.

Des calculs variationels complets ont été faits pour des ,,molécules* modéles diatomiques
4 deux électrons, en utilisant hamiltonien de CorTRELL et SuTTOoN et des fonctions d’onde
0.M, de WeINBAUM et de WaNG. On a étudié des systémes homonucléaires et hétéronucléaires.
Pour les liaisons homonucléaires entre atomes & Z élevé la fonotion O.M. donne des énergies
plus faibles que la fonction de Wawng. La présence des termes ioniques dans la fonetion d’onde
n’est pas nécessaire pour manifester une ,,énergie de stabilisation par résonance ionique‘ du
type de PAuriNG pour les molécules hétéronucléaires. La présence de termes ioniques est
importante cependant pour obtenir les meilleures énergies, et est essentielle pour avoir des
valeurs méme approximativement exactes des moments dipolaires. Les systémes modéles
prévoient que la corrélation de PAuLiNG entre les moments dipolaires et les différences d’élec-
tronagativité devrait dépendre de ya + y». C’est ce que semblent montrer les données expéri-
mentales.

1. Infroduction

Recently RUEDENBERG [I] has developed an interpretive analysis which
permits a detailed conceptual understanding of the anatomy of the chemical bond
and, particularly, of the origin of the energy lowering accompanying bond forma-
tion. In addition to studies on the hydrogen molecule-ion [2, 3], and the hydrogen

* Contribution No. 345 from the Department of Chemistry, Tufts University.
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[Z] and water molecules [£], RUEDENBERG and co-workers have also analyzed the
binding energies of several homonueclear first row diatomic molecules [5] and first
row diatomic hydrides [6]. The particular interest in these last two investigations
is that they offer an examination of the interpretive scheme with respect to trends
in the various defined energetic fragments comprising the binding energy.

To extend the analysis to additional series of similar molecules requires the
availability of equivalent and reasonable wave functions which must, as a mini-
mum requirement, provide a proper partitioning of the total energy into its kinetic
and potential components as governed by the virial theorem. In order to provide
wave functions for such an analysis which do meet this criterion, we have carried
out a series of calculations based on a model introduced by CorTrELL and SuTToN
[7] some years ago.

The model treats the two center chemical bond as a two electron problem
defined by the Hamiltonian operator

. . Zi Zs  Za  Zs 1 | ZaZs

%:_EV%—EVE_H-—E*Eﬁg . A (1)
The interactions of the remaining electrons are approximated by assigning non-
integral values to the nuclear charges Z 4 and Zg. In essence, the model treats a
many-electron diatomic molecule by collapsing into each of the nueclei their
respective core electrons, and representing the effect of this approximation solely
as the coulombic interactions of screened nuclei with each other and the two
valence electrons forming the bond. Hence by assigning different valuestoZ 4 = Z ,
it is possible to approximate the Hamiltonian operators of a series of homonuclear
molecules, and likewise, by assuming different sets of Z 4 Zp, various series of
heteronuclear bonds.

CorTrELL and SUTTON used a simple Heitler-London wave function constructed
from 1s STO’s with the orbital exponents selected as {4 =24 and {3 =Zpg. In
addition, a few calculations were performed with a Weinbaum function where, in
both the covalent and ionic parts, the {’s were again chosen equal to their respective
nuclear charges. Since no attempt was made to determine the orbital exponents
by a variational procedure, the wave functions do not satisfy the virial theorem [8].

In 1954, HurLEY [9] used this model to make additional caleulations within
the context of a perturbation treatment [10]. The Hamiltonian was rewritten as
the sum of a symmetric part and an antisymmetric part. Approximate wave
functions and energies for the symmetric part were obtained by a variationally
determined scaling of the Weinbaum function and internuclear distance for the
H, molecule. The resulting wave functions for these homonuclear molecules were
then taken as zeroth order wave functions to obtain results for heteropolar bonds
using the antisymmetric part of the total Hamiltonian as the perturbation. The
results of these calculations gave energies significantly lower than those of CorT-
RELL and SUTTON.

The idea of approximating inner shell interactions by screened nuclei to
simplify the Hamiltonian of more complex problems has been subsequently used
by other investigators [11]. These studies indicate the utility and mathematical
tractability of such an approximation for obtaining wave functions and energies
which reproduce essential features of the chemical bond in a series of similar
molecules.
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The present calculations make use of the CorTrELL and SurroN Hamiltonian
and the following three wave functions:

WanG: v = N [a(1) b(2) + a(2) b(1)] (2a)
MO: y = N[a(1) + 26(1)] [a(2) + 4b(2)] (2b)
WemwsavM:  y = Cyfa(1) b(2) + a(2) b(1)] + Caa(l) a(2) + C3b(1) b(2) . (2¢)

The orbital exponents in the 1s orbitals, @ and b, and the linear coefficients
were all treated as variation parameters. The resulting wave functions thus satisfy
the virial theorem. They will be used in a subsequent application of the inter-
pretive analysis mentioned above.

Our purpose in the present paper is to report some of the results of these
calculations and compare them with the earlier work. Systematic computations
were carried out over a range of internuclear distances for three sets of nueclear
charge values:

1. Homonuclear, with Z 4 = Zg = 0.5 to 2.0;

2. Heteronuclear, with Z4 = 1 + ¢, Zgp =1 — ¢, e = 0.05 to 0.8;

3. Heteronuclear “hydrides” with Z4 = 1 and Zg = 0.5 t0 2.0 .

The value of R,, was determined by minimizing the molecular energy with R
included as a variation parameter. In addition, the value of 27" + (V) was used
as a check on the correctness of the minimization.

In the subsequent discussion it will be seen that some modifications of the
conclusions drawn in the CoTTRELL and SuTT0N, and HURLEY papers are necessary.
Since the above wave functions provide varying degrees of flexibility, within the
variation procedure, to adjust to the asymmetry of the screened nuclear charges
in heteronuclear bonds, the results for these molecules are used as a basis for
discussing factors influencing properties peculiar to heteropolar situations.

II. Results of the Energy Calculation
(Z, Z) molecules

A summary of the binding energies of homonuclear molecules (Z,Z) for the three
trial wave functions of Eq. (2) and the Hurley function is given in Tab. 1. All of
the binding energies are calculated relative to the energies of the separated atoms
at infinite distance.

The positive entries in Tab. 1 deserve some comment at this point. When
Z+ 1, the results for the Wang and Weinbaum energies show the following
behavior as a function of the internuclear distance. As R increases from zero, E(R)
decreases to a minimum. A further increase in R is accompanied by an increase in
E(R) until it reaches a maximum value above the zero of energy. Finally, as B
increases without bound, E(R) decreases and approaches the proper limiting value
of zero as expected from the nature of these two wave functions.

The left hand portion of Fig. 1 displays the Weinbaum energy values of these
maxima and minima as a function of the ordinate Z. The right hand side of the
diagram gives the values of R at which the maxima and minima occur. For
example, if the ordinate Z = 1.4 is selected and a horizontal line drawn across the
graph, the abscissae of the intersections of this line with the four curves give,
respectively, the energy at the minimum, the energy at the maximum, E at the
minimum and R at the maximum. For Z > 1.65 and Z < 0.55, the relative minima
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Table 1. Binding Energies® of Homonuclear Molecules (Z,Z)

Wave Function

Z WaNe MO WEINBATM HvurLEY
0.5 +0.0148 +0.0250 +0.0131 +0.024
0.6 -0.0185 -0.0056 —-0.0189 —-0.008
0.7 —0.0548 —0.0401 —0.0549 —0.047
0.8 -0.0895 -0.0744 —0.0907 -0.085
0.9 -0.1186 —-0.1048 —0.1227 -0.120
1.0 -0.1391 —0.1282 -0.1479 —-0.148
141 -0.1481 -0.1419 —-0.1637 -0.462
1.2 ~0.1434 -0.1437 —-0.1677 -0.161
1.3 -0.1233 —0.1317 —-0.1581 —-0.140
1.4 —0.0865 -0.1045 —-0.1334 -0.095
1.5 -0.0316 —0.0599 —0.0921 -0.025
1.6 +0.0412 +0.00214 -0.0337 +0.074
1.7 +0.1314 +0.0830 +0.0428 —
1.8 +0.2382 +0.1833 +0.4375 —
1.9 — +0.3026 +0.2503 —
+0.4415 +0.3801 +0.810

2.0 —_

» Energies in atomic units.

oceur with energy values greater than zero. These molecules may be considered
stable in the sense that energy of the amount Emax — Emin is required to get the
molecule over the hump to dissociate. The positive values in the Weinbaum
column of Tab. 1 are the energies at these relative minima with respect to the

separated atoms.
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Fig. 2. Comparison of the MO, Wang and Hurley binding energies with the Weinbaum results
for the (Z,Z) molecules

RELATIVE BINDING ENERGES(au){Z,Z) CASES

Fig. 1 also shows that the energies at the maxima and minima as well as their
respective R values approach each other as Z goes above 2.0 or below 0.5. Thus
at some value Z > 2.0 and Z < 0.5, the molecules with these Z values will no longer
bind and B (R) will monotonically decrease with increasing R. The analogous Wang
results exhibit the same general behavior with the exception that the coalescence
of the minimum and maximum occurs at a Z value slightly greater than 1.8.

The binding energies summarized in Tab. 1 show the same trend with Z but
important differences appear in their relative values which are related to the
manner in which ionic terms are incorporated into the four frial functions. The
Wang function neglects these terms, the MO weights them equally with the co-
valent term, and the Weinbaum allows an optimal mixture of covalent and ionic
parts. Finally, the Hurley function fixes the relative ionic contribution to that
value determined from the Weinbaum funetion for the hydrogen molecule.

In Fig. 2 we have chosen the Weinbaum as our best function and have plotted
as a function of Z the differences between the minimum energies obtained from
this function and those of the MO, Wang and Hurley functions. From the way the
wave functions are constructed, it is apparent why Hurley’s results agree best
with the Weinbaum energies for Z values near unity. However, both the Wang and
MO functions give better relative values for other ranges of Z. At low Z values,
Z < 0.8, the Wang energies approach those of the Weinbaum function. The reason
for this behavior can be partially understood by examining Fig. 3 which displays
the Z dependence of the optimal ionic and covalent coefficients as well as the ratio
of their squares. As Z decreases from unity, the ionic coefficient, C,, becomes
progressively smaller in magnitude, passes through zero at Z ~ 0.67, and then
becomes negative. At Z ~ 0.67, C, = C; = 0, and the Weinbaum and Wang func-
tions become identical. For Z < 0.67, the variational adjustment of the linear coeffi-
cients of the Weinbaum function necessitates negative ionic coefficients to meet
the energy minimization requirement. The origin of this interesting result and its
relationship to electron correlation will be discussed more extensively in a future
report. From the Z dependence of C3/C? in Fig. 3, it can be said that, within the



Model T'wo-Electron Bonds 295

0.6 [ ]

0.5 |~ _
COVALENT =C; _|

03 —

02~ —
c
0.1 -C% -

00
IONIC=C, = C,,

-0.2— —
{ I | I i ] | |
06 08 10 2 4 16 I8 20

z

WEINBAUM UINEAR COEFFICENTS(Z,Z)MOLECULES

Fig. 3. Optimal values of the ionic and covalent coefficients and the ratio of their squares for
the Weinbaum (Z,Z) molecules

framework of the present model, an attempt to associate the “ionic” character of
a homonuclear bond with the relative magnitude of the ionic and covalent coef-
ficients must be viewed with caution [72].

Whereas the Wang energies are a good approximation to the Weinbaum results
for low Z values, at Z > 1.2, the MO function proves better. Again a partial explana-
tion is provided in Fig. 3 where it is seen that as Z increases, U, shows a general
increase in value with the result that the ionic contribution in the Weinbaum
function increases in importance.

(1, Z) and (1 + &, 1 — &) molecules

The energy minima for the heteronuclear molecules (1,Z) and (1 + ¢, 1 — &) are
presented in Tab. 2 and 3 respectively. Since Hurley’s paper contains no explicit
treatment of the (1,%) cases, they are absent from Tab. 2. It should be noted that
the binding minima are calculated with respect to the dissociation products deter-
mined by the particular ¢ or Z under consideration. Simple calculation shows that
when £ = 0.38 or Z = 1.70, the “neutral atoms’ with one electron at each nucleus
are of lower energy than the “‘ions” (1 + &)~ and Z~. For ¢ and Z greater than
these critical values, the ions are more stable and entries in Tab. 2 and 3 take this
into account where appropriate.

Fig. 4 shows how the MO, Wang and Hurley functions compare energetically
to the Weinbaum function as the nuclear charge asymmetry, ¢, increases. The
trends for the (1,Z) cases are similar. These results can be understood in terms of
the inherent flexibility of the trial functions to allow charge transfer to the more
electronegative center and dissimilar orbital exponents in the 1s4 and 1sp orbitals
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Table 2. Binding Energies® of Heteronuclear Molecules

(1,2)
Wave Function
VA Wara MO WEINBATM
0.5 -0.0017 -0.0827 —0.0983
0.7 -0.1134 -0.1025 ~0.1192
0.9 -0.4312 -0.1193 -0.1380
14 —0.1464 —0.1386 ~-0.1591
1.3 -0.4590 —-0.1660 -0.1875
1.5 —0.1688 ~0.2074 -0.2286
1.7 -0.1758 -0.2690 —0.2884

2.0 +0.1669 —-0.0684 —0.0816

* Energies in atomic units. Energy zero is taken as
the energy of the separated atoms, except for Z = 2.0
for which the separated ion energy is the zero.

on their respective centers. The Hurley and Weinbaum results compare well for
small e. This is to be expected since the Hurley values originate from a perturbation
treatment of the Weinbaum approximation to the H, molecule. As will be seen
below, the former function permits charge transfer. However, it allows no asym-
metry in the orbital exponents which are fixed at the value of  for the parent H,
molecule.

By contrast, the Wang approximation does not allow charge transfer but is
able to adjust to nuclear asymmetry by having unequal orbital exponents. The
lack of charge transfer as it affects the energy is dramatic, as illustrated in Fig. 4.
These results make apparent the need for including charge transfer flexibility in
the form of ionic terms within this approximation.

Finally, the MO function allows both charge transfer and different  values.
However, the charge transfer flexibility of the MO is more limited than that of the
Weinbaum because of the different ways in which the ionic terms are introduced
into the two functions. We note that the MO function provides the best approxima-

Table 3. Binding Energies® of Heteronuclear Molecules (1 + &,1 — &)

Wave Function

£ WaNg MO WEINBATM HupLEY
0.1 -0.1436 ~0.1357 -0.1551 -0.155
0.2 -0.1566 —0.1582 -0.1764 -0174
0.3 01773 -0.1956 ~0.2120 —-0.206
0.4 -(.1826 -0.2251 -0.2393 -0.230
0.5 —-0.0806 —0.1544 —-0.1659 -0.45
0.6 +0.0120 —-0.0979 -0.1068 -0.085
0.7 +0.0913 —0.0552 —0.0616 -0.032
0.8 +0.1491 -0.0259 --0.0301 +0.009

» Energies in atomic units. The energy zero is taken as the energy
of the separated atoms for ¢ < 0.4, and for separated ions (1 + &)~
and (1 — &)t for ¢ > 0.4.
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Fig. 4. Comparison of the MO, Wang and Hurley binding energies with the Weinbaum results
for the (1 + &, 1 — &) molecules

tion to the Weinbaum function for large values of s. As g gets small, both the
Wang and Hurley functions prove better because of their greater merit as trial
functions for the homonuclear H, molecule.

III. Charge Asymmetries and Dipole Moments

Since the asymmetric electronic charge distribution characteristic of hetero-
nuclear diatomic molecules is reflected in many of the chemical and physical
properties of these bonds, we wish to consider briefly how the wave functions in
our calculations describe the electronic distributions of the model molecules. If
we wish to understand the total electronic asymmetry in terms of its atomic
constituents, there are at least three factors which must be considered:

1. electronic charge transfer to the valence active atomic orbitals on the more
electronegative atom;

2. differences in the spatial extensions of the electronic densities associated
with the two atoms;

3. distortion polarization and hydridization of the atomie orbitals.

Orbital populations

As mentioned previously, asymmetry is introduced into the wave functions
used here by only the first two factors mentioned above. In order to isolate these,
it is convenient to write the molecular density associated with the wave functions
of Eq. (2) as

o(1) = g(4) a®(1) + ¢(B) b¥(1) + 2p(A4,B) {a(1) b(1) — % [a2(1) + BT (3)
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with
q(4) = 2[C] + O3+ 30,C,8 + C,C48 + (CF + 0,0;) 87
9(B) =2[0}+ 03 + 30,058 + C,0,8 + (CF + 0,05) 87
p(4,B) = 2[C,C, + C,0; + (C’% + C305) 8]

and

S = Ja(i) b(1) dv, .

The detailed physical significance of this density partitioning has been discussed
elsewhere [1]. For our purposes it is sufficient to note that the terms g(4) a?(1)
and ¢(B) b%(1) can be regarded as the contributions to the total molecular density
arising from the modified atoms A and B as they appear in the molecule. The
quantities ¢(4) and ¢(B) are defined as the populations of orbitals ¢ and b, respec-
tively, and are found to obey the relationships

jq(A) a*(1) dr, = g(4) jq(B) 82(1) dr; = g(B)
with
je(i) dvy = g(4) + ¢(B) =2 .

Thus, we may define the contribution to the total charge asymmetry which results
from charge transfer as the difference in the orbital populations

8= q(4) — q(B) =2[C} — O} + 20,(C, — Cy) 8] .
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Fig. 5. Orbital population differences as a function of the nuclear charge asymmetry for three
approximate wave functions
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The consequences of this definition are immediate. Since €, = C; for homopolar
bonds, § = 0 as expected. Secondly, for any bond described by a Heitler-London
or Wang wave function, €, = C; = 0, and again § = 0. In the present calculation
only the Weinbaum and MO functions allow charge transfer. In addition, the
Hurley function may be written in the form of Eq. (2c) with the result that é = 0
since Cp 5 C.

The parameter § has been calculated for these three wave functions at the
energy minima for the heteropolar series (1 + ¢, 1 — &). The results are shown in
Fig. 5 as a function of &. In general all three wave functions show the same trend
with increasing nuclear asymmetry. In order to achieve the best energy, however,
the MO function must allow a greater charge difference than the corresponding
Weinbaum results. The Hurley function shows the largest é values for &£ < 0.55,
but as ¢ increases beyond this point, § increases less rapidly and eventually at
g = 0.8, lies below both the MO and Weinbaum results. This behavior may be
traced to the form of the approximate wave function used by Hurley in his pertur-
bation treatment.

Dipole moment

A property closely related to the charge difference ¢ but characteristic of the
total asymmetric electronic distribution is the electronic contribution to the
dipole moment. Application of the dipole moment operator to the density of
Eq. (3) and subsequent integration gives as the electronic moment or negative
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Tig. 6. Reduced electronic dipole moments as a function of the nuclear charge asymmetry for
the four trial wave functions
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center of electronic charge, the expression
pet = 3 Beg 9(4) — & Beg ¢(B) — 2p(4,B) (a | 2| b) = $ 8Reg — 2p(4,B) <a | 2 | b

with the origin of coordinates taken at the midpoint of the bond distance. The
electronic moment is seen to consist of two terms. The first, & OBy, originates
from the atomic contributions to the total density and is directly related to the
difference in orbital populations. The second term, 2p(4,B) {a [ z | b, is nonzero
only if the spatial extensions of the @ and b orbitals are different and, hence,
reflects that portion of the total charge asymmetry due to this factor.

The electronic moments divided by R,, have been calculated for the (1+¢,1 —¢)
molecules with all four wave functions. The results are displayed in Fig. 6
as a function of &. Not surprisingly, the Wang function is quite unsuitable for
reproducing the total charge asymmetry in a heteropolar bond between atoms of
different electronegativities since it allows only contributions of the second kind.
Charge transfer is essential as shown by the similar behavior of the electronic
moments for the other three functions. In fact, the Hurley function achieves its
moment solely through charge transfer effects. The similarity of the Hurley
moments with those calculated from the MO and Weinbaum functions clearly
indicates that the charge transfer asymmetry is the dominant contribution in
these calculations.

1V. Electronegativity

As is well known, PAULING empirically established for many heteronuclear
diatomic molecules that the quantity

A=Efy— 3{B5, + BB} >0

where Efp, BZ, and EEy are the absolute values of the binding energies for the
diatomic molecules indicated in the subscripts. His explanation included a discus-
sion of the relative contributions of the ionic terms in the approximate wave func-
tions for these molecules. One of the most interesting results of the CorTrELL and
SUTTON paper was the observation that A is positive even though the calculations
were performed with a simple valence bond function which makes no explicit
reference to ionic terms.

On the basis of their results CorrrELL and Surron formulated two rules for
the model systems:

1. The electronic energy, B4z, is constant for molecules with
Z 4 + Zp = constant, if Z 4 — Z p is not too large.

2. Ep =% {E%4+ E%g} .
These authors concluded that the additional stability of the heteropolar bond
could be attributed primarily to a decrease in the nuclear repulsion energy of the
screened 4 and B nuclei relative to that of the hydrogen molecule. HurLEY
confirmed these conclusions with his improved calculations, and since his wave
function contains ionic terms, the stabilization of the AB bond appears quali-
tatively independent of their inclusion.

The more precise calculations reported here bear out the principal qualitative
conclusions of the previous investigations, but establish narrower limits on the
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Table 4. Electronic Energies for A, and AB Molecules ( Weinbaum-
type Wave Function)

Za Zs ';‘ {Eﬁa + Egs} E:lB AE#
1.00 1.00 — 1.8472 —
140  0.90 1.8624 1.8569 -0.0055
1.20 0.80 1.9062 1.8858 —0.0204
1.30  0.70 1.9807 1.9339 —-0.0468
140 0.60 2.0857 2.0013 -0.0844

1.50 0.50 2.2195 2.0880 -04315

s The absolute values of the electronic energies have been
taken and are given in atomic units. 4 B¢ is the difference between
the fourth and third columns.

validity of the two rules stated above. Examination of the fourth column of
Tab. 4 shows the first rule to be accurate to 0.01 a.u. when Z 4 — Zp < 0.2. The
fifth column of this table offers a test of the second rule, where we note that as the
nuclear charge asymmetry increases for Z 4 + Zp = 2.0, A E¢! becomes increasingly
negative and results in a destabilization of the heteronuclear bond relative to the
parent homonuclear molecules. Since A itself is positive, the stabilization of the
AB bond results from the decrease in nuclear repulsion in spite of the opposite trend
in the electronic energy. This result is clearly indicated in Fig. 7 where AENE is the
negative of the difference between the nuclear repulsion of AB and the average of
that for AA and BB. The various energy differences appear as linear functions of
2 and have been calculated for values of ¢ such that AB dissociates to atoms. An
additiona)l feature of Fig. 7 is the fact that trends for both the Heitler-London-
Wang and Weinbaum calculations are qualitatively quite similar, making ib
unnecessary to appeal to relative ionic term contributions as the source of the
stabilization.
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Fig. 7. The origin of the heteropolar bond stabilization energy
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Table 5. Electronic Moments and Electronegativity Differ-
ences for Various Nuclear Charge Sums

Zia + Zg Z4 —Zg i Allz
Reg
01 0.0527 0.0361
1.5 0.3 0.1672 0.1072
0.5 0.2907 0.1758
0.1 0.0640 0.0447
1.7 0.3 0.1870 0.1334
0.5 0.3145 0.2211
0.2 0.1315 0.1091
2.0 0.4 0.2622 0.2173
0.6 0.3910 0.3248
0.1 0.0665 0.0616
2.3 0.3 0.1981 0.1857
0.5 0.3280 0.3088
0.1 0.0659 0.0663
2.5 0.3 0.1982 0.1979
0.5 0.3294 0.3295

In addition to the A’s and electronic moments calculated for Z 4 4+ Zg = 2.0,
we have collected together in Tab. 5 some additional data from the Weinbaum
approximation for other nuclear charge totals. We note that in each case both the

I ] I
04— 207
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03 Zp+Zg715 =
Fel 02 —
Req
Q.- -
} | I
O.l 0.2 0.3
AT

Fig. 8. The “partial ionic character” vs. the electronegativity difference as a function of the
total screened nuclear charge



Model Two-Electron Bonds 303

0.5 ] I
\
\
\e
A
04 AN -
L3
—~ \
Xm . \‘..
| \
2; ‘.°\\
~ \
& 03 \ . =
= \
g \
@ \
< \
5 \ .
\
g "\
& 0.2+ \\. -
& * \\
= \ e
5 . '\\
S AN
<< Q. — —
| [ | |
2.0 30 40 50 60
X,+ X B

Fig. 9. Correlation of the “amount of ionic character” per unit electronegativity difference
with the electronegativity sum. The dashed line is not a prediction from the model, but is
included only to illustrate the trend

electronic moment and A"z show, to a very good approximation, a linear depend-
ence on the nuclear charge difference, Z 4 — Zp. The result, then, that the electro-
nic moment is linear in A% is shown as the family of lines in Fig. 8. If we regard
pet] Beg as directly related to Pauling’s “amount of ionic character” and A"z as
proportional to the electronegativity difference, X4 — ¥p, then Fig. 8 may be
compared with the analogous graph given by PavriNe [13].

Recognizing the inherent shortcomings and approximate nature of the model,
there are several features of Fig. 8 which deserve some comment. Pavring [14]
related ionic character to electronegativity difference with the curve

“amount of ionic character’” = 1 — ¢—0.25 (4 —%5) |

However, if we regard Z 4 + Zp as directly related to the electronegativity sum
X 4 + Xp, the results for the model predict a family of linear relationships which
have the property that the slope of the lines increase as X4 + X g decreases. This
result indicates a possible reason why Pauling’s curve only roughly agrees with
the experimental points on his graph. In order to test this prediction, we have
determined the amount of ionic character from Pauling’s graph for the molecules
he lists there, divided this quantity by x4 + y s as determined from his electro-
negativity table [15], and plotted this quotient as a function of y4 + y5. The
result, shown in Fig. 9, appears to indicate a correlation between the slope and
electronegativity sum in qualitative agreement with the behavior of the model.
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