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Complete variationally correct calculations have been performed for model two-electron 
diatomic "molecules" using the Cottrell and Sutton Hamiltonian and Weinbaum, Wang and 
MO wave functions. Both homonuclear and heteronuclear systems have been studied. In 
homonuclear bonds between high Z atoms the MO function gives lower energies than the 
Wang function. The presence of ionic terms in the wave function is not necessary to show 
Pauling-type "ionic resonance energy stabilization" of heteronuclear molecules. The presence 
of ionic terms is important, however, to get the best energies, and is essential to achieve even 
approximately correct values of the dipole moments. The model systems predict that Pauling's 
correlation of dipole moments and electronegativity differences should show a dependence on 
XA + ZB. This appears to be indicated by the experimental data. 

Variationsrechnungen an zweiatomigen Zweielektronen-NIodellmolekiilcn werden unter Ver- 
wendung des Hamilton-Operators yon COTTR~r,r, und SuT~o~ und einer MO-Funktion bwz. 
der runktioncn yon WANG sowie WEINBAUM durchgeffihrt. In homonuklearen Molekiilen mit 
hoher Kernladungszahl gibt eine NIO-Funktion eine tiefere Energie als die yon WANG. Ioni- 
sche Terme in der Wellenfunktion sind nicht nStig, um zu zeigen, dab eine Bindung in heteropo- 
lareu Molekfilen gegcniiber einer homSopolaren Bindung stabilisiert ist, wohl aber, um einen 
guten Wert fiir Energie und Dipolmoment zu erhalten. Die Paulingsche Korrelation yon 
Dipolmoment und Elektronegativit~tsdifferenz ist yon der Summe der Elektronegativit~ten 
abh~ngig. 

Des calculs variationels complets ont ~t6 faits pour des ,,mol6cules" modules diatomiques 
s deux 61ectrons, en utilisant l'hamiltonien de COTT~ELL et SUTTO~ et des fonctions d'onde 
O.M, de W~I~BAU~ et de WANG. On a 6tudi6 des syst~mes homonucl6aires et h6t@ronucl6aires. 
Pour les liaisons homonucl6aires entre atomes s Z @lev@ la fonction O.lYl. donne des 6nergies 
plus faibles que la fonetion de WANG. La pr6sence des termes ioniques dans la fonction d'onde 
n'est pas n6cessaire pour manifester une ,,6nergie de stabilisation par r6sonance ionique" du 
type de PAuLr~G pour les mol6cules h~t@ronucl~aires. La pr6sence de termes ioniques est 
importante cependant pour obtenir les meilleures 6nergies, e tes t  essentielle pour avoir des 
valeurs m~me approximativement exactes des moments dipolaires. Les syst~mes modbles 
pr6voient que la corrdlation de PAVLI~G entre les moments dipolaires et les differences d'@lec- 
tronagativit6 devrait d6pendre de XA + Xs. C'est ce que semblent montrer les donn6es exp6ri- 
mentales. 

1. Introduction 

Recent ly  RUEDEI~BERG [1] has developed an  in terpre t ive  analysis  which 
permits  a detai led conceptual  unde r s t and ing  of the a n a t o m y  of the chemical bond  
and,  par t icular ly ,  of the origin of the energy lowering accompanying  bond  forma- 
t ion.  I n  addi t ion  to studies on the hydrogen molecule-ion [2, 3], and  the hydrogen 
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[1] and water molecules [4], RUEDENBERG and co-workers have also analyzed the 
binding energies of several homonuclear first row diatomic molecules [5] and first 
row diatomic hydrides [6]. The particular interest in these last two investigations 
is tha t  they offer an examination of the interpretive scheme with respect to trends 
in the various defined energetic fragments comprising the binding energy. 

To extend the analysis to additional series of similar molecules requires the 
availability of equivalent and reasonable wave functions which must,  as a mini- 
mum requirement, provide a proper partitioning of the total  energy into its kinetic 
and potential  components as governed by the virial theorem. In  order to provide 
wave functions for such an analysis which do meet  this criterion, we have carried 
out a series of calculations based on a model introduced by  COTTRET,L and SUTTON 
[7] some years ago. 

The model treats the two center chemical bond as a two electron problem 
defined by  the Hamfltonian operator 

ZA ZB ~ ~ Z~ Z,  ZA z ,  + - - 1  + - -  (1) 
= - -  2 V l  - -  1 V 2 $'A1 ~'B1 ~*A2 rB2 ~'12 J~ 

The interactions of the remaining electrons are approximated by  assigning non- 
integral values to the nuclear charges ZA and ZB. In essence, the model treats a 
many-electron diatomic molecule by  collapsing into each of the nuclei their 
respective core electrons, and representing the effect of this approximation solely 
as the coulombie interactions of screened nuclei with each other and the two 
valence electrons forming the bond. Hence by  assigning different values to ZA = ZB, 
it is possible to approximate the Hamiltonian operators of a series of homonuclear 
molecules, and likewise, by  assuming different sets Of ZA :/= ZB, various series of 
heteronuclear bonds. 

COTTRELL and SUTTON used a simple Heitler-London wave function constructed 
from Is  ST0 ' s  with the orbital exponents selected as ~x = ZA and tB = Zz.  In  
addition, a few calculations were performed with a Weinbaum function where, in 
both the covalent and ionic parts,  the ~'s were again chosen equal to their respective 
nuclear charges. Since no a t tempt  was made to determine the orbital exponents 
by  a variational procedure, the wave functions do not satisfy the virial theorem [8]. 

In  t954, HURLEY [9] used this model to make additional calculations within 
the context of a perturbation t rea tment  [10]. The I-Iamiltonian was rewritten as 
the sum of a symmetric par t  and an antisymmetric part .  Approximate  wave 
functions and energies for the symmetric par t  were obtained by a variationally 
determined scaling of the Weinbaum function and internuclear distance for the 
H2 molecule. The resulting wave functions for these homonuclear molecules were 
then taken as zeroth order wave functions to obtain results for heteropolar bonds 
using the antisymmetric par t  of the total  Hamiltonian as the perturbation. The 
results of these calculations gave energies significantly lower than those of COTT- 
BELL and S U T T O N .  

The idea of approximating inner shell interactions by  screened nuclei to 
simplify the Hamiltonian of more complex problems has been subsequently used 
by  other investigators [11]. These studies indicate the utility and mathematical  
t ractabi l i ty of such an approximation for obtaining wave functions and energies 
which reproduce essential features of the chemical bond in a series of similar 
molecules. 
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292 M.J.  FEINBERG and T. E. H ~ s :  

The present calculations make use of the COTTRELL and SUTTON Hamiltonian 
and the following three wave functions: 

WANG: ~v = N [a(l) b(2) ~- a(2) b(l)] (2a) 

MO: ~v = N[a(l)  + ~b(l)] [a(2) + ~b(2)] (2b) 

WEn~BAUM: ~V = Cl[a(l ) b(2) + a(2) b(l)] ~- C~a(i) a(2) ~- C3b(l) b(2). (2c) 

The orbital exponents in the is  orbitals, a and b, and the linear coefficients 
were all t reated as variat ion parameters.  The resulting wave functions thus satisfy 
the virial theorem. They will be used in a subsequent application of the inter- 
pretive analysis mentioned above. 

Our purpose in the present paper  is to report  some of the results of these 
calculations and compare them with the earlier work. Systematic computations 
were carried out over a range of internuclear distances for three sets of nuclear 
charge values: 

I .  Homonuclear,  with ZA = ZB = 0.5 to 2.0; 
2. Hcteronuclear,  with ZA = i -~ s, Z s  = I -- ~, s = 0.05 to 0.8 ; 
3. Heteronuclear "hydrides" with ZA = i and ZB = 0.5 to 2.0.  
The value of Req was determined by  minimizing the molecular energy with R 

included as a variat ion parameter .  In  addition, the value of 2 ( T )  ~- ( V )  was used 
as a check on the correctness of the minimization. 

I n  the subsequent discussion it  will be seen tha t  some modifications of the 
conclusions drawn in the COTT~LT, and SUTTON, and HV~L~u papers are necessary. 
Since the above wave functions provide varying degrees of flexibility, within the 
variat ion procedure, to adjust to the asymmetry  of the screened nuclear charges 
in heteronuclear bonds, the results for these molecules are used as a basis for 
discussing factors influencing properties peculiar to heteropolar situations. 

II. Results of the Energy Calculation 
( Z, Z) mole~u~ 

A summary  of the binding energies of homonuclear molecules (Z,Z) for the three 
trial wave functions of Eq. (2) and the Hur ley  function is given in Tab. 1. All of 
the binding energies are calculated relative to the energies of the separated atoms 
at  infinite distance. 

The positive entries in Tab. i deserve some comment at  this point. When 
Z r  l ,  the results for the Wang and Weinbaum energies show the following 
behavior as a function of the internuclear distance. As R increases from zero, E(R) 
decreases to a minimum. A further increase in R is accompanied by  an increase in 
E(R) until it reaches a max imum value above the zero of energy. Finally, as R 
increases without bound, E(R) decreases and approaches the proper limiting value 
of zero as expected from the nature of these two wave functions. 

The left hand portion of Fig. I displays the Weinbaum energy values of these 
maxima and minima as a function of the ordinate Z. The right hand side of the 
diagram gives the values of R at  which the maxima and minima occur. For  
example, ff the ordinate Z -- 1.4 is selected and a horizontal line drawn across the 
graph, the abscissae of the intersections of this line with the four curves give, 
respectively, the energy at  the minimum, the energy at  the maximum,  R at  the 
minimum and /?  at  the maximum.  For Z > 1.65 and Z < 0.55, the relative minima 
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Table 1. Binding Energies, of Homonuclear Molecules (Z,Z) 

Wave Function 

Z WANG MO WEINBAU/r HURLEY 

0.5 +0.0148 +0.0250 +0.0131 +0.024 
0.6 -0.0185 -0.0056 -0.0189 -0.008 
0.7 -0.0548 -0.0401 -0.0549 -0.047 
0.8 - 0.0895 - 0.0744 - 0.0907 - 0.085 
0.9 -0A186 -0.1048 -0.1227 - 0 A 2 0  
1.0 -0A39 i  -0 . t282  -0 . t479  -0.148 
1.1 -0.1481 -0A419 -0A637 - 0 . t 6 2  
t .2 -0.1434 -0A437 -0.1677 -0A61 
i .3 -0.1233 -0 .13t7  -0.1581 - 0 . t 4 0  
1.4 -0.0865 -0.1045 -0 . t334  -0.095 
t .5 -0.0316 -0.0599 -0.0921 -0.025 
1.6 +0.0412 +0.002t -0.0337 +0.074 
1.7 +0.1314 +0.0830 +0.0428 - -  
t .8  +0.2382 +0.1833 +0.1375 - -  
1.9 - -  +0.3026 +0.2503 - -  
2.0 - -  +0.4415 +0.3801 +0.810 

Energies in atomic units. 

occu r  w i t h  e n e r g y  va lue s  g r e a t e r  t h a n  zero.  T h e s e  mo lecu l e s  m a y  be  c o n s i d e r e d  

s t a b l e  in  t h e  sense  t h a t  e n e r g y  o f  t h e  a m o u n t  Emax - Emin is r e q u i r e d  to  ge t  t h e  

m o l e c u l e  o v e r  t h e  h u m p  t o  d i s soc ia t e .  T h e  p o s i t i v e  v a l u e s  i n  t h e  W e i n b a u m  

c o l u m n  o f  T a b .  I a re  t h e  e n e r g i e s  a t  t h e s e  r e l a t i v e  m i n i m a  w i t h  r e s p e c t  t o  t h e  

s e p a r a t e d  a t o m s .  
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Fig. I.  Binding energy maxima and minima and associated internuclear distances for the 
Weinbaum (Z,Z) molecules. - refers to properties of the minima and . . . .  to properties 

of the maxima. Curves for the internuclear distances at  the maxima are approximate 
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Fig. 2. Comparison of the MO, Wang and Hurley binding energies with the Weinbaum results 
for the (Z,Z) molecules 

Fig. I also shows tha t  the energies at  the maxima and minima as well as their 
respective R values approach each other as Z goes above 2.0 or below 0.5. Thus 
at some value Z > 2.0 and Z < 0.5, the molecules with these Z values will no longer 
bind and E ( R) will monotonically decrease with increasing R. The analogous Wang 
results exhibit the same general behavior with the exception tha t  the coalescence 
of the minimum and max imum occurs at a Z value slightly greater than  1.8. 

The binding energies summarized in Tab. I show the same trend with Z but  
important  differences appear in their relative values which are related to the 
manner  in which ionic terms are incorporated into the four trial functions. The 
Wang function neglects these terms, the MO weights them equally with the co- 
valent  term, and the Weinbaum allows an optimal mixture of covalent and ionic 
parts.  Finally, the Hurley function fixes the relative ionic contribution to tha t  
value determined from the Weinbaum function for the hydrogen molecule. 

In  Fig. 2 we have chosen the Weinbaum as our best function and have plotted 
as a function of Z the differences between the minimum energies obtained from 
this function and those of the MO, Wang and Hurley functions. From the way the 
wave functions are constructed, it is apparent  why Hurley 's  results agree best 
with the Weinbaum energies for Z values near unity. However,  both the Wang and 
NO functions give bet ter  relative values for other ranges of Z. At low Z values, 
Z < 0.8, the Wang energies approach those of the Weinbaum function. The reason 
for this behavior can be partially understood by  examining Fig. 3 which displays 
the Z dependence of the optimal ionic and covalent coefficients as well as the ratio 
of their squares. As Z decreases from unity, the ionic coefficient, C~, becomes 
progressively smaller in magnitude, passes through zero at  Z N 0.67, and then 
becomes negative. At Z ~-- 0.67, C~ = Ca = 0, and the Weinbaum and Wang func- 
tions become identical, For Z < 0.67, the variational adjustment  of the linear coeffi- 
cients of the Weinbaum function necessitates negative ionic coefficients to meet  
the energy minimization requirement. The origin of this interesting result and its 
relationship to electron correlation will be discussed more extensively in a future 

$ B report.  From the Z dependence of C~/C1 in Fig. 3, it can be said that ,  within the 
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Fig. 3. Optimal values of the ionic and covalent coefficients and the ratio of their squares for 
the Weinbaum (Z,Z) molecules 

framework of the present model, an a t tempt  to associate the "ionic" character of 
a homonuclear bond with the relative magnitude of the ionic and covalent coef- 
ficients must  be viewed with caution [12]. 

Whereas the Wang energies are a good approximation to the Weinbaum results 
for low Z values, at Z > 1.2, the MO function proves better. Again a partial  explana- 
tion is provided in Fig. 3 where it  is seen tha t  as Z increases, C~ shows a general 
increase in value with the result tha t  the ionic contribution in the Weinbaum 
function increases in importance. 

(l, Z)  and  (l + s, l - s) molecules 

The energy minima for the hcteronuclear molecules (i,Z) and (l + s, l - s) are 
presented in Tab. 2 and 3 respectively. Since Hurley 's  paper  contains no explicit 
t rea tment  of the (i,Z) cases, they are absent from Tab. 2. I t  should be noted tha t  
the binding minima are calculated with respect to the dissociation products deter- 
mined by  the particular s or Z under consideration. Simple calculation shows tha t  
when e ~ 0.38 or Z ~ 1.70, the "neutral  a toms"  with one electron at  each nucleus 
are of lower energy than  the "ions" (l -F s)-  and Z- .  For s and Z greater than 
these critical values, the ions are more stable and entries in Tab. 2 and 3 take this 
into account where appropriate.  

Fig. 4 shows how the MO, Wang and Hurley functions compare energetically 
to the Weinbaum function as the nuclear charge asymmetry,  s, increases. The 
trends for the (l,Z) cases are similar. These results can be understood in terms of 
the inherent flexibility of the trial functions to allow charge transfer to the more 
electronegative center and dissimilar orbital exponents in the ~s~ and tsB orbitals 
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Table 2. Binding Energies~ of Heteronuclear Molecules 
(1,Z) 

Wave Function 
Z WA~o 1~O W~n~BAVM 

0.5 -0.0917 -0.0827 -0.0983 
0.7 -0.1134 -0. t025 -0.1192 
0.9 -0.1312 -0.1193 -0.1380 
t.1 -0.1464 -0.1386 -0.1591 
1.3 -0.1590 -0.1660 -0.1875 
t.5 -0.1688 -0.2074 -0.2286 
1.7 -0.1758 -0.2690 -0.2884 

2.0 +0.1669 -0.0684 -0.0816 

Energies in atomic units. Energy zero is taken as 
the energy of the separated atoms, except for Z = 2.0 
for which the separated ion energy is the zero. 

on the i r  respec t ive  centers .  The  H u r l e y  and  W e i n b a u m  resul ts  compare  well  for 
smal l  ~. This  is to  be expec ted  since t he  H u r l e y  va lues  or ig inate  f rom a p e r t u r b a t i o n  
t r e a t m e n t  of  t he  W e i n b a u m  a p p r o x i m a t i o n  to  the  H a molecule.  As will be seen 
below, the  former  func t ion  pe rmi t s  charge t ransfer .  However ,  i t  allows no asym-  
m e t r y  in the  o rb i t a l  exponen t s  which are  f ixed a t  the  va lue  of  ~ for t he  p a r e n t  H~ 
molecule.  

B y  cont ras t ,  the  W a n g  a p p r o x i m a t i o n  does no t  al low charge t ransfe r  b u t  is 
able  to  a d j u s t  to  nuclear  a s y m m e t r y  b y  hav ing  unequa l  o rb i t a l  exponents .  The  
lack  of  charge t rans fe r  as i t  affects the  energy is d r ama t i c ,  as i l lu s t r a t ed  in  Fig .  4. 
These  resul ts  m a k e  a p p a r e n t  t he  need  for  inc luding charge t rans fe r  f lexibi l i ty  in  
the  form of  ionic t e rms  wi th in  th is  app rox ima t ion .  

F ina l ly ,  the  M e  func t ion  allows bo th  charge t rans fe r  and  different  $ values.  
However ,  the  charge t rans fe r  f lexibi l i ty  of  the  M e  is more  l imi ted  t h a n  t h a t  of  the  
W e i n b a u m  because  of  the  different  ways  in  which the  ionic t e rms  are  i n t roduced  
in to  the  two funct ions.  W e  no te  t h a t  the  MO func t ion  prov ides  the  bes t  app rox ima-  

Table 3. Binding Energies~ of Hateronuclear Molecules (1 + e, t - e) 

Wave Function 
s WANG MO WEINBAUlVl HURLEY 

0A - 0.1436 -0.1357 - 0A551 -0.155 
0.2 -0.1566 -0.1582 -0.1764 -0.174 
0.3 -0A773 -0.t956 -0.2120 -0.206 

0.4 -0A826 -0.2251 -0.2393 -0.230 
0.5 -0.0806 -0.1544 -0.1659 -0.151 
0.6 +0.0120 -0.0979 -0.1068 -0.085 
0.7 +0.0913 -0.0552 -0.0616 -0.032 
0.8 +0.t491 -0.0259 -0.0301 +0.009 

Energies in atomic units. The energy zero is taken as the energy 
of the separated atoms for e < 0.4, and for separated ions (i + e)- 
and (1 - s) + for e ~> 0.4. 
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Fig. 4. Comparison of the MO, Wang and Hurley binding energies with the Weinbaum results 
for t~he (1 + e, I - e) molecules 

tion to the Weinbaum function for large values of s. As s gets small, both the 
Wang and Hurley functions prove better  because of their greater merit  as trial 
functions for the homonuclear H~ molecule. 

I I I .  C h a r g e  A s y m m e t r i e s  a n d  D i p o l e  M o m e n t s  

Since the asymmetric electronic charge distribution characteristic of hetero- 
nuclear diatomie molecules is reflected in many  of the chemical and physical 
properties of these bonds, we wish to consider briefly how the wave functions in 
our calculations describe the electronic distributions of the model molecules. I f  
we wish to understand the total  electronic asymmetry  in terms of its atomic 
constituents, there are at  least three factors which must  be considered: 

1. electronic charge transfer to the valence active atomic orbitals on the more 
electronegative a tom; 

2. differences in the spatial extensions of the electronic densities associated 
with the two atoms; 

3. distortion polarization and hydridization of the atomic orbitals. 

Orbital populations 
As mentioned previously, asymmetry  is introduced into the wave functions 

used here by only the first two factors mentioned above. I n  order to isolate these, 
it is convenient to write the molecular density associated with the wave functions 
of Eq. (2) as 

S 
e(i)  = q(A) a2(i) + q(B) 52(1) + 2p(A,B) {a(l) b(l) -- ~ [aS(l) + b2(i)]}] (3) 
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with 

and 

q(A) = 2 [ C ~  § C~ + 3C~C2S + C~CaS + (C~ -+- C~C3) S 2] 

q(B) = 2[C~ + C~ + 3C~CaS + CIC2.t.~ J7 (C~ J7 C2C8) ~2] 

p(A,B) = 2[C1C~ + C~C~ + (C~ + C'~U,) #] 

t "  

S = J a(1) b(~) dT 1 . 

The  de ta i l ed  phys ica l  significance of  th is  dens i t y  pa r t i t i on ing  has  been  discussed 
elsewhere [1]. F o r  our  purposes  i t  is sufficient to  note  t h a t  the  t e rms  q(A) a2(l) 
and  q(B) b2(~) can be rega rded  as the  con t r ibu t ions  to  the  t o t a l  molecular  dens i ty  
ar is ing f rom the  modif ied  a t o m s  A and  B as they appear in the molecule. The 
quant i t i es  q(A) a n d  q(B) are  defined as the  popu la t ions  of  o rb i ta l s  a a n d  b, respec- 
t ive ly ,  and  are  found  to obey  the  re la t ionships  

q(A) aS(l) d~ 1 = q(A), ~ q(B) b~(l) d~l = q(B) 

with 

~ (l) d ~  = q(A) + q(B) = 2 .  

Thus,  we m a y  define the  con t r ibu t ion  to  the  t o t a l  charge a s y m m e t r y  which resul ts  
f rom charge t ransfe r  as t he  difference in  the  o rb i t a l  popu la t ions  

= q(A) -- q(B) = 2[C~2 - Ca ~ § 2C1(C ~ - Ca) S ] .  
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Fig. 5. Orbital population differences as a function of the nuclear charge asymmetry for three 
approximate wave functions 
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The consequences of this definition are immediate.  Since G~ = C 3 for homopolar  
bonds, ~ = 0 as expected. Secondly, for any bond described by  a Hei t ler-London 
or W a n g  wave function, C 2 = C 3 = 0, and again ~ = 0. I n  the present calculation 
only the Weinbaum and MO functions allow charge transfer. I n  addition, the 
Hur l ey  funct ion m a y  be wri t ten in the form of Eq.  (2c) with the result  t ha t  ~ # 0 

since C~ # C8. 
The parameter  ~ has been calculated for these three wave functions at  the 

energy minima for the  heteropolar  series (l 4- e, l -- s). The results are shown in 
Fig. 5 as a funct ion of  s. I n  general all three wave functions show the same t rend  
with increasing nuclear asymmetry .  I n  order to  achieve the  best  energy, however, 
the MO funct ion mus t  allow a greater charge difference than  the corresponding 
Weinbaum results. The Hur ley  funct ion shows the largest ~ values for e < 0.55, 
bu t  as e increases beyond this point,  6 increases less rapidly  and eventual ly  at  
e = 0.8, lies below both  the MO and Weinbaum results. This behavior  m a y  be 
t raced to the form of the approximate  wave function used by  Hur ley  in his pertur-  
bat ion t rea tment .  

Dipole moment 

A proper ty  closely related to the charge difference ~ bu t  characteristic of  the 
tota l  asymmetr ic  electronic distr ibution is the electronic contr ibut ion to  the  
dipole moment .  Applicat ion of  the dipole momen t  operator  to  the  densi ty of  
Eq. (3) and subsequent  integrat ion gives as the electronic momen t  or negative 
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Fig. 6. Reduced electronie dipole moments as a function of the nuclear charge asymmetry for 
the four trial wave functions 
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center of electronic charge, the expression 

/~,~ = -~ R,q q(A) �89 Req q(B) 2p(A,B)  (a [ z I b) ~ R 
- -  -- = -~r eq -- 2p(A,U) (a [ z ]b) 

with the origin of coordinates taken at  the midpoint of  the bond distance. The 
electronic moment  is seen to consist of two terms. The first, �89 (}Meq , originates 
from the atomic contributions to the total  density and is directly related to the 
difference in orbital populations. The second term, 2p(A,B)  (a [ z ] b), is nonzero 
only ff the spatial extensions of the a and b orbitals are different and, hence, 
reflects tha t  portion of the total  charge asymmet ry  due to this factor. 

The electronic moments  divided by  Req have been calculated for the (t -b e, 1 - ~) 
molecules with all four wave functions. The results are displayed in Fig. 6 
as a function of ~. Not  surprisingly, the Wang function is quite unsuitable for 
reproducing the total  charge asymmet ry  in a heteropolar bond between atoms of 
different electronegativities since it allows only contributions of the second kind. 
Charge transfer is essential as shown by  the similar behavior of the electronic 
moments  for the other three functions. In  fact, the Hurley function achieves its 
moment  solely through charge transfer effects. The similarity of the Hurley 
moments  with those calculated from the MO and Weinbaum functions clearly 
indicates tha t  the charge transfer a symmet ry  is the dominant contribution in 
these calculations. 

IV. Electronegativity 

As is well known, PAVLING empiricMly established for many  heteronuclear 
diatomic molecules tha t  the quant i ty  

A E~B 1 rE  B = --~=l AA + EBB} > 0  

where EA~B, E~A and EBB are the absolute values of the binding energies for the 
diatomie molecules indicated in the subscripts. His explanation included a discus- 
sion of the relative contributions of the ionic terms in the approximate wave func- 
tions for these molecules. One of the most  interesting results of the CO~T~]~LL and 
SVTTON paper  was the observation tha t  A is positive even though the cMculations 
were performed with a simple valence bond function which makes no explicit 
reference to ionic terms. 

On the basis of their results COTT~WLL and SUTTON formulated two rules for 
the model systems: 

t. The electronic energy, Ee~B, is constant for molecules with 
ZA + ZB = constant, ff ZA -- ZB is not too large. 

These authors concluded tha t  the additional stability of the heteropolar bond 
could be at t r ibuted primarily to a decrease in the nuclear repulsion energy of the 
screened A and B nuclei relative to tha t  of the hydrogen molecule. Hv~LwY 
confirmed these conclusions with his improved calculations, and since his wave 
function contains ionic terms, the stabilization of the AB bond appears quali- 
ta t ively independent of their inclusion. 

The more precise calculations reported here bear out the principal qualitative 
conclusions of the previous investigations, but  establish narrower limits on the 



Model Two-Electron Bonds 301 

Table 4. Electronic Energies ~ ]or A 2 and AB Molecules (Weinbaum- 
type Wave Function) 

ZA ZB u ~ A~ + E s B }  ~ 

t.00 1.00 - -  1.8472 - -  
tA0 0.90 t.8624 1.8569 -0.0055 
1.20 0.80 1.9062 i.8858 -0.0204 
1.30 0.70 t.9807 1.9339 -0.0468 
1.40 0.60 2.0857 2.0013 -0.0844 
1.50 0.50 2.2i95 2.0880 -0A315 

a The absolute values of the electronic energies have been 
taken and are given in atomic units. AE~z is the difference between 
She fourth and third columns. 

v a l i d i t y  of  the  two rules s t a t ed  above.  E x a m i n a t i o n  of the  four th  column of 
Tab.  4 shows the  first  rule to  be accura te  to  0.01 a.u. when ZA -- Z B  < 0.2. The  
fif th column of  th is  t ab le  offers a t e s t  of  t he  second rule,  where we note  t h a t  as the  
nuclear  charge a s y m m e t r y  increases for ZA + Z B  = 2.0, zJEd becomes increas ingly  
nega t ive  and  resul ts  in a destabilization of the  he te ronuc lear  bond  re la t ive  to  the  
pa ren t  homonuc lea r  molecules.  Since A i tself  is posi t ive ,  the  s tab i l i za t ion  of  the  
AB bond  resul ts  f rom the  decrease in nuclear  repuls ion in  spi te  of  the  oppos i te  t r e n d  
in the  electronic energy.  This  resul t  is c lear ly  i nd i ca t ed  in Fig.  7 where A E  NR is the  
nega t ive  of  the  difference be tween  the  nuclear  repuls ion of A B  and  the  average  of  
t h a t  for A A  and  BB.  The  var ious  energy differences appea r  as l inear  funct ions  of 
s~ and  have  been  ca lcu la ted  for values  of  s such t h a t  A B  dissociates  to  a toms.  A n  
add i t iona l  fea ture  of  Fig.  7 is the  fac t  t h a t  t r ends  for bo th  the  He i t l e r -London-  
W a n g  and  W e i n b a u m  calculat ions  are qua l i t a t i ve ly  qui te  s imilar ,  mak ing  i t  
unnecessary  to  appea l  to  re la t ive  ionic t e rm  cont r ibu t ions  as the  source of  the  

s tabi l iza t ion .  
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Fig. 7. The origin of the heteropolar bond stabilization energy 

I 
OJO 



302 ~I. J. ~EINBERG and T. E. HAAS: 

Table 5. Electronic Moments and Electronegativity Differ- 
ences /or Various Nuclear Charge Sums 

Za + ZB Za - ZB Re--~ 

1.5 
0A 0.0527 0.0361 
0.3 0.t672 0.t072 
0.5 0.2907 0.1758 

1.7 
0A 0.0640 0.0447 
0.3 0.t870 0.t334 
0.5 0.3145 0.2211 

2.0 
0.2 0A3~15 0A091 
0.4 0.2622 0.2173 
0.6 0.39t0 0.3248 

2.3 
0.1 0.0665 0.0616 
0.3 0A981 0.1857 
0.5 0.3280 0.3088 

2.5 
0.t 0.0659 0.0663 
0.3 0.1982 0.t979 
0.5 0.3294 0.3295 

In  addition to the zJ's and electronic moments calculated for ZA -F Z B  = 2.0, 
we have collected together in Tab. 5 some additional data from the Weinbaum 
approximation for other nuclear charge totals. We note that  in each case both the 

l 1 t 
0.4 -- 2.0 - 

~ 2 . 5 , 2 . 5  
0.5 -- Z 1 7 a +  ~ _ 

~e..__AI 0.2 - / ,  
Req 

0.1 

T I I 
0.I 0.2 0.5 

I 
,,xz 

Fig. 8. The "partial ionic character" vs. the eleotronegativity difference as a function of ~he 
total screened nuclear charge 
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Fig. 9. Corre la t ion o f  t h e  " a m o u n t  o f  ionic cha r ac t e r "  pe r  u n i t  e l ec t ronega t iv i ty  difference 
wi th  t h e  e ]ec t ronega t iv i ty  sum.  T h e  da shed  line is no~ a p red ic t ion  f rom t h e  model ,  b u t  is 

inc luded  on ly  to  i l lus t ra te  t h e  t r e n d  

electronic moment  and A:/2 show, to a very good approximation, a linear depend- 
ence on the nuclear charge difference, ZA -- ZB. The result, then, tha t  the electro- 
nic moment  is linear in All, is shown as the family of lines in Fig. 8. I f  we regard 
/.ze~/Req as directly related to Pauling's "amount  of ionic character" and/111~ as 
proportional to the electronegativity difference, Z.4 -  ZB, then Fig. 8 may  be 
compared with the analogous graph given by PAlLInG [13]. 

Recognizing the inherent shortcomings and approximate nature of the model, 
there are several features of Fig. 8 which deserve some comment.  PAIrLrNG [14] 
related ionic character to eleetronegativity difference with the curve 

"amount  of ionic character" = t -- e -  0.25 ( z A -  z ~ ) .  

However, if we regard ZA + ZB as directly related to the electronegativity sum 
ZA + ZB, the results for the model predict a family of linear relationships which 
have the property tha t  the slope of the lines increase as ZA + ZB decreases. This 
result indicates a possible reason why Pauling's curve only roughly agrees with 
the experimental points on his graph. In  order to test  this prediction, we have 
determined the amount  of ionic character from Pauling's graph for the molecules 
he lists there, divided this quanti ty by  ZA + ZB as determined from his electro- 
negativi ty table [15], and plotted this quotient as a function of ZA ~- ZB. The 
result, shown in Fig. 9, appears to indicate a correlation between the slope and 
electronegativity sum in qualitative agreement with the behavior of the model. 
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